


摘要:为使融合图像保留丰富的细节和纹理信息,提出了一种基于非下采样剪切波变换(NSST)和稀疏表示的多聚焦图像融合方法。鉴于稀疏表示能够有效地捕捉图像中的结构信息这一优势,并充分考虑像素间的区域相关性,低频子带系数采用稀疏表示和区域能量相结合的融合策略,以及加权平均的融合规则.高频子带系数采用区域能量取大的融合规则。实验结果表明,该方法融合图像清晰度高,能够更好地保留图像细节信息。
关键词:非下采样剪切波变换;稀疏表示;区域能量;多聚焦图像;图像融合
中图法分类号:TP391 文献标识码:A
1 引言
由于光学镜头景深的限制,成像系统无法获取场景中全部目标均清晰的图像,这不利于后续图像的理解与处理。多聚焦图像融合技术的出现有效解决了这一难题。多聚焦图像融合通过一定的算法,可以把2 幅或多幅图像融合成所有目标均清晰的图像[1~2] 。
目前,多聚焦图像融合技术已广泛应用于机器视觉、目标识别、医学、军事等领域。
多尺度变换是目前最常用的像素级融合方法。
其中,小波变换在时域和空域均有良好的局部化特性,能够获得良好的融合效果,但小波变换在图像细节提取方面效果欠佳。针对小波变换的不足,研究者提出了轮廓波变换[3] 。轮廓波变换具备良好的非线性逼近能力,能够更稀疏地表示图像,但因其在变换过程中存在采样操作,容易产生伪吉布斯效应。非下采样剪切波变换(NSST)完全继承了轮廓波变换的优点,且在变换过程中不存在采样操作,其计算效率更高,具有方向敏感性、平移不变性等优点。因此,作为一种有效的图像分解工具,NSST 被广泛应用于图像去噪、图像增强等图像处理领域。
在基于多尺度變换的融合方法中,研究者大多把研究焦点放在高频子带系数融合规则的设计上,低频子带系数一般采用“取平均”的融合规则。“取平均”策略虽然实现简单,但是容易丢失源图像中的有用信息,且降低图像的对比度。

